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Instituto de Mateḿatica Aplicada San Luis (IMASL), Departamento de Fı́sica, Ej́ercito de los
Andes 950, (5700) San Luis, Argentina

Received 7 January 1998, in final form 30 March 1998

Abstract. We consider a fully connected Hopfield-like neural network as a set ofN

independent perceptrons. We trained these perceptrons using the so-calledinverse perceptron
rule, obtaining a matrixJ of synaptic couplings, that make a number of spurious statesunstable.
We numerically determine the optimum number of spurious states, obtained by random shooting,
that must be destabilized in order to obtain an improvement in performance.

The unlearning procedure generated, is shown to be able to give a high-performance
associative memory characterized by: (1) an enhancement in storaging capacity; (2) an
enlargement in the size of attraction basins; (3) a reduction in the number of spurious attractors
and (4) a reliable and fast retrieval.

One of the most impressive capacities of the human brain is its behaviour as a content
addressable memory (CAM). Artificial neural networks (ANN) intend to mimic this capacity
and much work has been made in this direction [1–6]. For example, the seminal work of
Hopfield [7] must be mentioned, who introduced an energy-like Liapounov function and the
corresponding statistical physics methodology used to describe the relaxation of symmetric
networks. However, the Hopfield network suffers a main drawback, consisting of the
appearance of the blackout catastrophe or overloading. This occurs if too much information
is stored, and as a consequence the neural network ceases to function as an associative
memory. The performance is seriously affected because the number of spurious or parasitic
states grows exponentially with respect to the number of intentionally stored memories.

Thus, a reduction of these spurious states can be expected to notably improve the network
efficiency. Numerous contributions have been made to reach this aim [6, 8–10], of which
we chosean unlearning procedureso far not fully understood. It was first implemented
by Hopfield et al [11] and later by other authors [12–15]. Basically it consists of starting
a relaxation process from a random initial state and iteratively adding the result to each
synaptic coupling, with a small negative coefficient, which means ‘unlearning’ the effect of
random retrievals.

The effect of unlearning is to erase the most strongly attracting spurious memories while
doing no harm to the true ones. This procedure is inspired by the suggestion of Crick and
Mitchison [16], who hypothesized that the purpose of dream (REM) sleep is to weaken
certain undesirable modes in the network cells on the cerebral cortex.

Previous authors [11–15] implemented the unlearning mechanism sharing similar ideas,
focusing on the number of times that the mechanism must be applied [14]. From another
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Figure 1. Architecture used.JM−1
ij are the weights resulting from the last iteration,KM

ij are

the weights destabilizing a spuriousηi(i = 1 . . . N) andJMij are the weights resulting from the
present iteration.

point of view, in this letter we shall show that the unlearning procedure actually involves
the destabilizationof spurious states that shall be unlearned, focusing now on determining
the number of spurious states that must be destabilized.

In order to reach this aim we consider that a fully connected Hopfield-like network
may be viewed as a set ofN independent perceptrons which are trained in order to make
a number of spurious states unstable [17]. In this system, the synaptic couplingJij is
independent of the connectionJji†. A given system stateζi(i = 1 . . . N), is both the output
of the perceptroni and the input for all the other perceptrons. If a given state is (un)stable
for all (or some) perceptrons, it is (un)stable for the whole system, which means that this
state is (is not) a fixed point of the neural dynamics.

We address the following issues.
(i) To apply this reverse learning procedure, shedding light on the underlying mechanism.
(ii) To implement the procedure, describing it and discussing its main results.
(iii) To show that the proposed unlearning mechanism, implies an important

improvement on each one of the four points that characterize a high-performance CAM, i.e.
high capacity: the ANN must be able to store the maximum possible number of patterns;size
of attraction basins:the network should be tolerant to noisy or partial inputs;the existence
of only relatively few spurious memories, and few or no limit cycleswith a negligible size
of basins of attraction; and finallyfast and reliable memory retrievals.

The basic architecture used, shown in figure 1, is briefly described as follows.
RH. A Hopfield-like network, fully connected, operated asynchronously following the

Monte Carlo or Glauber dynamics at zero temperature

hi(t) ≡
N∑
j=1

Jij sj (t) (1)

si(t + 1) = sign(hi(t)). (2)

† The asymmetry that appears consideringN independent perceptrons is negligible, as was determined in all our
simulations. We only find fixed points and no limit cycles, i.e. an energy function yet drives the relaxation process
and is only a little perturbation of a Hopfield-like one.
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Figure 2. Pattern stability (see text) versus destabilization steps. The maximum is found in
M∗ = 500. Each point is an average on at least 10 networks, the bars show the standard
deviation of each one.

P. The same RH network considered now as a collection ofN independent perceptrons.
These perceptrons are trained with the inverse-perceptron rule, whose operation is defined
asas follows.

(1) Start with the connection weights existents in RH,K0
ij = Jij .

(2) Relax from a random configuration and test, for the obtained spurious state
ηi(i = 1 . . . N), whether the stability condition for the neurodei is satisfied:

ηi
∑
j

Kijηj > c (3)

wherec(> 0) is the stability. While condition (3) is true, we change each weight according
to

Kij → Kij − εηiηj (i, j = 1 . . . N; j 6= i) (4)

whereε adjusts the change in the connection weights made in each perceptron step (note
the minus sign).

(3) Repeat (2) for each neurode.
A description of the whole sequence to be followed for this iterative and local procedure

is as follows.
(a) Storing the patterns (of components+1 and−1 with equal probability) through the

Hebb rule, in RH.
(b) Attainment of metastable spurious states in RH, resulting from: (i) random

shooting: the network is initially started in a random configuration (note that this fits the
neurophysiological picture given in [16]), (ii) relaxation towards an attractor: the network
evolves to a stationary configuration,ηi(i = 1 . . . N).

(c) Unlearning spurious states by destabilizing them (see (4)). The new connections
obtained in such a way,KM

ij , are used to correct the synaptic couplings in RH (see [18]),
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according to

JM+1
ij = JMij + λKM

ij . (5)

(d) Iterate (b) and (c).
Then, there are two learning phases; the first (point (a)) consisting of storing the pattern

to memorize in the Hopfield network, using the Hebb rule. The second (points (b)–(d))
consists of the modification of the synaptic couplings in the original Hopfield network.

We aim to obtain the matrix of connectionsJ which determine the optimum number
(M∗) of metastable spurious states to destabilize. Such an optimum can be obtained in many
ways. We use the method which gives the maximum stability to the patternsξ

µ

i (i = 1 . . . N).
This is justified because a strong indication exists [18] that by proceeding in such a way,
the maximization of the attraction basins is achieved and, the network performance is also
optimized.

The pattern’s stability is given by (see figure 2)

1M
min = min

{
ξ
µ

i

∑
j

ξ
µ

j J
M
ij with i = 1 . . . N andµ = 1 . . . p

}
(6)

and its maximum

1M∗
min = max{1M

min with M = 0 . . .Mmax} (7)

For the optimum numberM∗ we propose

M ∗ (λ, p,N, c) = f λ(λ) · f p(p) · f N(N) · f c(c) (8)

whereλ (see (5)) adjusts the change made over the couplings of RH with the weightsKM
ij

while p is the number of patterns,N is the network size (the number of neurodes) and
c is the stability in the inverse-perceptron algorithm. The assumption of a multiplicative
dependence was verified numerically.

A working zone is defined taking five values of each parameterλ, p, N andc, which
includes the typical cases, beingp ∝ N the really interesting one. Applying these values
and collecting the results we have obtained

M ∗ (λ, p,N, c) = 1

λ
· p ·

(κ1

N
+ κ2

)
exp(κ3 · c) (9)

whereκ1 = 16.684± 2.22, κ2 = 1.5± 0.047,κ3 = 0.91± 0.02.
This equation gives the optimum number of spurious states that need to be destabilized

in order to obtain an optimal performance. This deserves some comments about the specific
scaling of the parameters. At this point one must realize that (9) has a validity range given
by the data collected.

Thus, within the limits of our numerical results, for increasing correction strengthsλ

(see (5)),M∗ correspondingly decreases, and the observed linear dependence ofα(= p/N)
andp onM∗, gives the desired performance.

In the range studied, we have observed that the spurious stability shows a distribution
in which the parameterc operates like a cut-off value. Thus, an exponential number of
steps are needed to destabilize the remaining spurious states.

On the other hand, at least for some values outside the working zone, theα andp scaling
appears to be exponential and theλ andc dependence shows a breakdown forλ > 1.5 and
c > 2 respectively.

It is particularly instructive to compare a given model with the Hopfield model [7].
Consequently, our results using (9) will be contrasted with those obtained by the standard
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Figure 3. Overlapm versusα = p/N . Each point or triangle is the average of at least 10
networks, and the bars indicate the standard deviation.
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Figure 4. Final overlapm versus initial overlapm0 for a reference pattern. Each point or
triangle is the average of at least 10 networks, and the bars indicate the standard deviation.

Hopfield model. For this purpose we follow the following four points characterizing a
high-performance CAM.
• High capacity. In figure 3 we show a typical capacity plot of overlapm versus
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Figure 6. Histograms of retrieval overlaps(m). The histograms are averaged over at least 50
networks and 1000 trials have been performed on each one.
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loadingα = p/N , the enhancement of the capacity being evident. The overlapm between
the reached final stationary stateζi(i = 1 . . . N) and the starting patternξµi (i = 1 . . . N, µ =
1 . . . p) is defined as1

N

∑N
i=1 ζiξ

µ

i .
• Size of attraction basins. In figure 4 we plot the final overlap reached(m) versus the

starting one(m0) in order to show a measure of the improvement obtained with the proposed
procedure on the size of attraction basins. The network is initialized at configurations with
an overlapm0 relative to a target or reference pattern. For each initial state, the ordinate
shows the overlap of the reference pattern with the fixed point reached after relaxation.
Similar results have been obtained for greater network sizes(N = 200) and for otherc
values within the working zone.
• The existence ofonly relativelyfew spurious memories and few or no limit cycleswith

a negligible size of attraction basins. The results that have already been shown in figures 3
and 4 are a consequence of the effective reduction of spurious states. Limit cycles have
never been observed. It is also interesting at this point to consider the retrieval time results.
• Fast and reliable memory retrievals. In order to have a measure of retrieval time, we

determine the time spent to evolve to a fixed point (measured as the number of relaxation
steps), starting from an initial overlapm0, relative to a reference pattern. In figures 5(a)–(c)
we represent with a cross the time taken to reach a pattern (final overlapm > 0.95) and with
an open circle the time for the case moving away from a pattern (final overlapm < 0.95).

In order to complement and to make more evident the results shown in figures 5(a)–(c),
we plot in figures 6(a)–(c) the corresponding histograms of retrieval overlaps(m) for the
case of initial overlapm0 = 0.85.

In the Hopfield case (figure 6(a)) only 4% of trials converged to the target pattern, and
the remaining 96% of trials resulted in convergence to patterns other than the target pattern.
Most of these are spurious attractors that have a retrieval overlap of about 0.5. We can
observe that by applying the unlearning procedure (figure 6(b)), the inverse behaviour is
obtained, i.e. 99% of the trials now converge to the target pattern.

Comparison of figures 5 and 6 shows the unlearning procedure gives a somewhat faster
and notably more reliable memory retrieval than the Hopfield model, for networks which
have the same relatively high loads,α = 0.3. Moreover, an attenuated result is gained even
for an extreme case(α = 0.5) if the unlearning procedure if applied. It must be observed
that at this load the breakdown catastrophe makes the Hopfield model useless as a CAM.

In conclusion we have given a new framework to obtain insight into the underlying
mechanism of the unlearning procedure. We have also shown that destabilizing is an
effective mechanism to reduce the number of spurious attractors. The application of the
proposed procedure results then in achieving a high-performance CAM.

The authors acknowledge partial financial support from Secretarı́a de Ciencia y T́ecnica de
la Universidad Nacional de San Luis. PMP is the recipient of a fellowship from CONICET.
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